產業水污染防治法修正宣導與廢水處理技術講習會(南區)

工業廢水相關處理技術介紹

中山大學環工所 周明顯 104年3月25日

內容

1. 化學處理及案例

2. 厭氧/喜氣取代傳統有機廢水處理技術

3. MBR應用案例

4. 金屬電鍍製程減廢及管末處理改善案例

1.化學處理及案例

Fenton處理程序

- Fenton程序乃於1894年首度由學者「Fenton」提出,近年來,其逐漸被利用在廢水處理及土壤污染整治
- 各類Fenton程序之反應,主要為H₂O₂與鐵鹽反應,產生大量具強氧化力之氫氧自由基(OH·),進而與大部分之有機物反應,使其礦化為、及無機離子
- Fenton試劑價位較為低廉、不具毒性,且鐵鹽於自然界含量甚多,較容易傳輸與控制,因此後續Fenton反應被發展為許多型態
- 某些Fenton反應型態將導致大量污泥產生,故反應程序之 設計應謹慎考量

傳統Fenton反應

• H₂O₂與Fe²⁺酸性環境下進行反應,此時二價鐵離子將被氧 化為三價鐵離子,同時產生氫氧自由基

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH \cdot + OH^-$$

• 當pH大於 3-4,且鐵濃度足夠,則溶液中之鐵具有轉為氫氧化鐵沉澱之傾向,因此Fenton反應通常僅發生在 pH 2-4 間,於 pH 2.8 時最為有效

• Fenton反應之重要操作參數尚包括 H_2O_2 與Fe²⁺之添加比例,其將對 OH·之產量造成極大之影響

匀相Fenton反應程序

傳統Fenton

Fe²⁺ + H₂O₂
$$\rightarrow$$
 Fe³⁺ + OH·+OH⁻
Fe³⁺ + H₂O₂ \rightarrow Fe²⁺ + HO₂·+H⁺
Fe²⁺ + OH· \rightarrow HO⁻ + Fe³⁺
H₂O₂ + OH· \rightarrow HO₂·+H₂O
Fe²⁺ + HO₂·+H⁺ \rightarrow Fe³⁺ + H₂O₂
Fe³⁺ + HO₂· \rightarrow Fe²⁺ + O₂ + H⁺

photo-Fenton

$$Fe^{3+} + H_2O_2 + hv \rightarrow$$

$$Fe^{2+} + H^+ + OH \cdot$$

Fenton-like

多數位於低氧化態之過渡 金屬及其複合物皆具有 Fenton反應之氧化特性, 如 Cu⁺、Cr²⁺、Co²⁺、Ti³⁺

非勻相Fenton反應程序

• 使用固相鐵進行反應

- 包括含鐵金屬、矽砂表面覆鐵、沸石表面吸附鐵或離子交換膜等,此類反應鐵成分多存在固相中,故容易與處理水分離(勻相程序多須以提高pH值移除系統中的鐵,導致大量之含鐵污泥生成)

•直接添加固相含鐵氧化物之顆粒

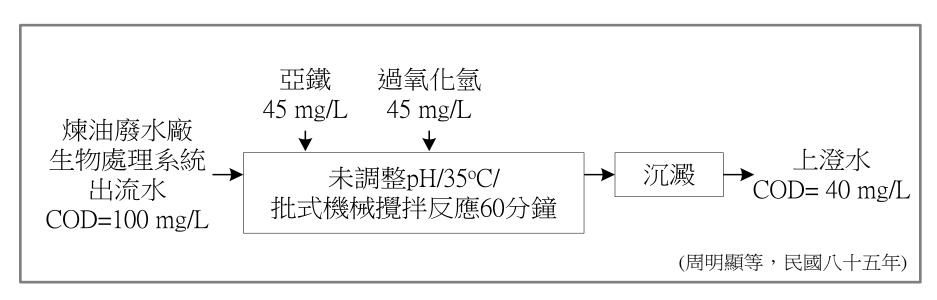
- 其約為10 μm~5 mm之顆粒,如goethite、針鐵礦,為自然產生之金屬礦物,含量多,易於取得,其他可替代之鐵氧化物包括有 γ -FeOOH、 α -Fe₂O₃、FeO(OH)·nH₂O、Fe₃O₄等,此類Fenton程序之特點在於其必須持續補充鐵源
- 亦可以photo-Fenton、流體化床-Fenton等形式進行反應 6

非勻相Fenton反應程序

• 電解-Fenton程序

- 以電參與Fenton反應,可由系統中參與反應之鐵的形式不同分為二種
- 陰極Fenton程序(cathodic Fenton process)亦稱為「電解還原-Fenton法」,以 Fe³+ 於陰極還原為 Fe²+ 參與反應, 反應後 Fe²+又被氧化為 Fe³+,鐵離子不斷被循環使用, 可減少藥劑成本及污泥產生
- 陽極Fenton程序(anodic Fenton process)亦稱為「電解氧化-Fenton法」,鐵電極為犧牲陽極,產生鐵離子進行Fenton反應。

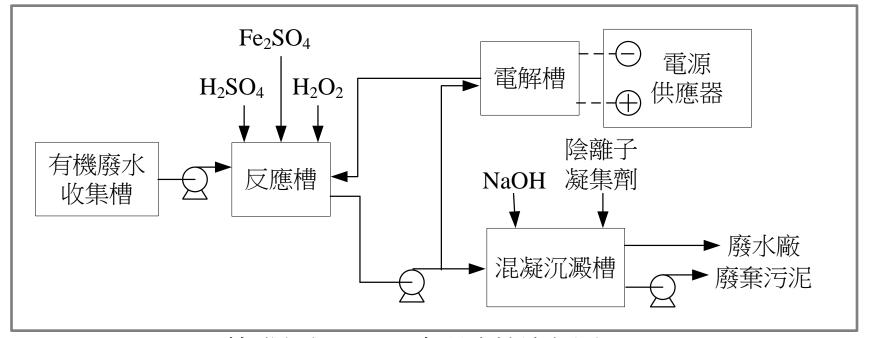
Fenton家族技術原理及特點

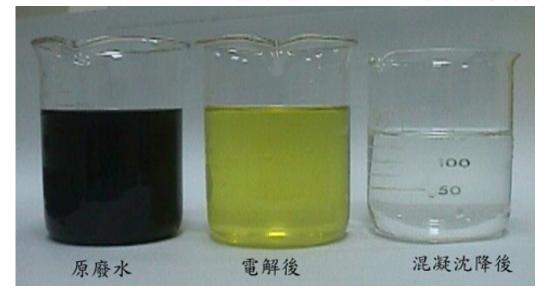

編號	項目		技術分類					
1	中文名稱	傳統-	電解氧化-	電解還原_	流體化床.	Fenton		
		Fenton法	Fenton法	Fenton法	Fenton法	家族		
2	英文簡稱	Fenton	FentonⅡ	FentonⅢ	Fenton ^{IV}	F-Family		
3	COD範圍	50-1000	50-500	1000-50000	50-200	50-50,000		
4	主要原理	H_2O_2 + Fe^{2+} \rightarrow	Fe [→] Fe ²⁺ +2e ⁻ ;	$Fe^{3+} \rightarrow Fe^{2+} + e$	$2H_2O_2+Fe^{2+} \rightarrow OH$	電場解離有機		
		·OH+OH+Fe ³⁺	$H_2O_2+Fe^{2+}$	H_2O_2 + Fe^{2+}	+H ₂ O+FeOOH;	物,FeOOH催化		
		(基本反應)	OH +OH+Fe ³⁺	OH +OH +Fe ³⁺	H ₂ O ₂ +FeOOH→	H ₂ O ₂ ,均可促進有		
						機物分解。		
6	技術差異性	均相反應,易受雜	電解氧化產生	遷原 Fe(Ⅲ),	異相催化反應,污泥	創新:降低污泥產		
		質干擾,而且鐵污	Fe(Ⅱ),電場解離有	鐵污泥循環利用,減	形成結晶,滅低70%污	量,提高對有機物		
		泥多。	機物。	量80%	泥餅	效處理率。		

http://proj.moeaidb.gov.tw/eta/train/PDF/H10917-02.pdf

Fenton程序案例介紹

a. 煉油廢水處理


- · 某國內某煉油廢水廠生物處理系統出流水Fenton法處理試驗, 生物系統出流水COD約100 mg/L
 - ,經加入亞鐵及過氧化氫各45 mg/L,在未調整pH、35℃下批式機械攪拌反應60分鐘後沉澱,上澄水COD為40 mg/L。

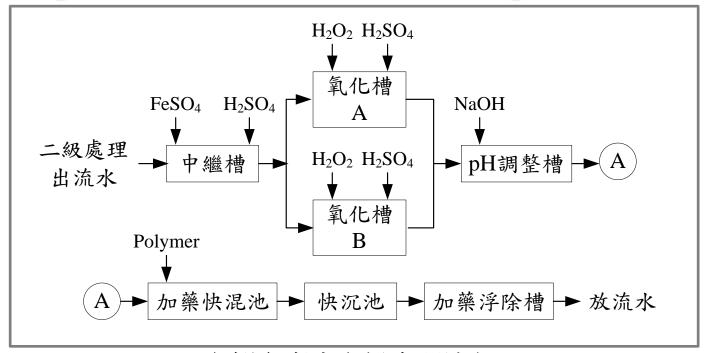

b. 以Fenton法處理半導體製造高濃度有機廢水

- 某半導體公司平均每天產生1 m³ COD濃度18,000 mg/L的高濃度有機廢水。
- · 經電解還原Fenton法處理,可去除90%以上COD。
- ·處理流程分廢水收集、電解還原Fenton及混凝沉澱三部份。
- 電解還原Fenton主要包含批次反應槽(2m³)、電解槽(0.8 m³)、電 源供應器、控制及加藥系統等部份。
- 處理時,在批次反應槽加入適量硫酸亞鐵,並加硫酸調整pH 值至1.8,由循環抽水泵抽送進入電解槽中。在啟動電源同時, 定量加入H₂O₂進行電解/氧化。
- · 經22.5小時電解還原反應,廢水再打入混凝沉澱系統,調整pH 值至7左右,使Fe(OH)₃沉澱分離,分別排出上層廢水及底部的鐵污泥,完成整個處理流程。該系統均以PLC (programmatic logic control)自動操作全程控制。

b. 以Fenton法處理半導體製造高濃度有機廢水

電解還原-Fenton處理系統流程圖

電解還原-Fenton處 理某半導體公司廢水 前後外觀顏色變化


電解氧化-Fenton III法 實廠設備

environment.com.tw/html/modules.php?name=C ontent&pa=showpage&pid=5

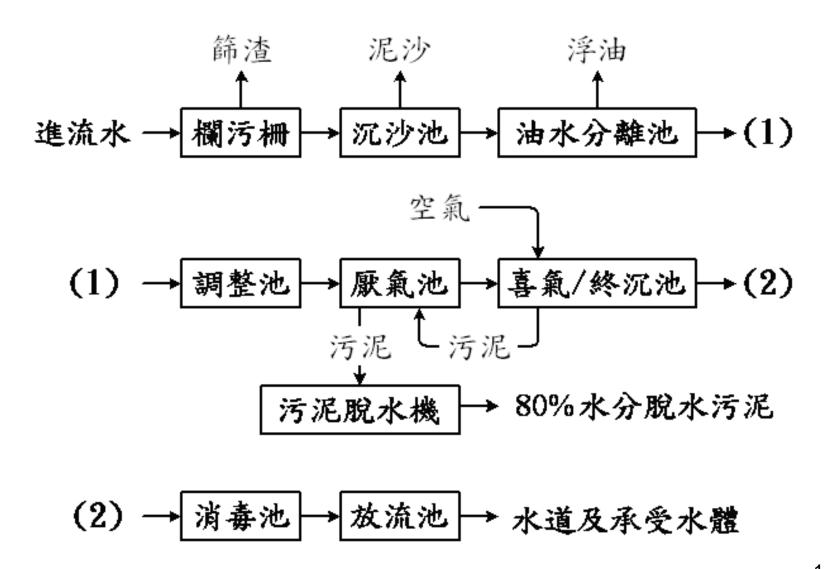
c. 流體化床Fenton法高級處理

• 案例廠流體化床Fenton化學氧化處理,系統主要為兩個直徑 2.5 m、高9 m的流體化床反應槽,預計處理4,000 m³/d之進流水量。進流水COD及SS濃度分別為130及30 mg/L,硫酸亞鐵和 H₂O₂加藥量之重量比(Fe²⁺ / H₂O₂)小於0.8。出流水經pH調整並 過濾後,COD去除率大於38%。氧化處理設備添加H₂O₂耗用量 在110 mg/L以下,硫酸亞鐵耗用量在88 mg/L以下。

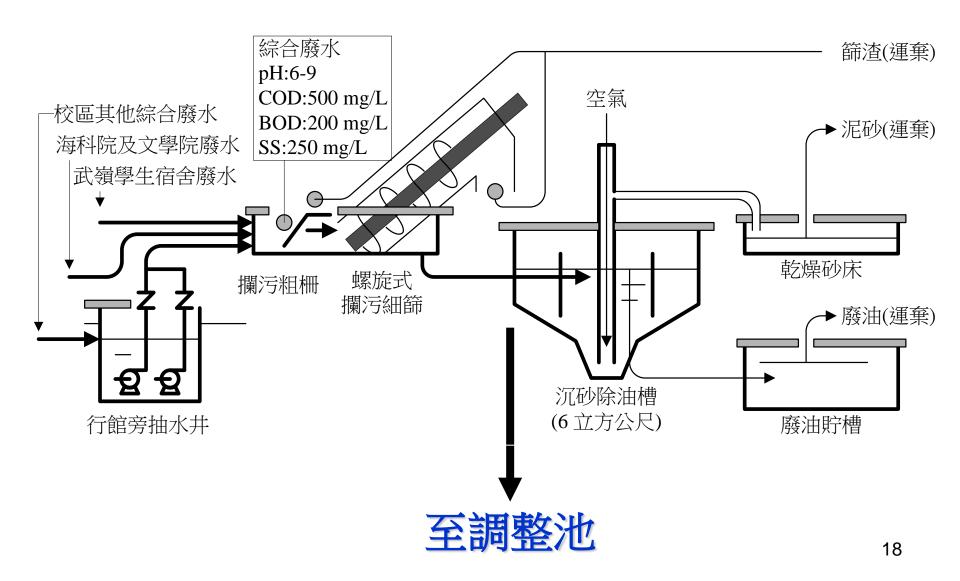
2.厭氧/喜氣取代傳統有機廢水處理技術-優點

- 1. 污泥減量可達90%
- 2. 剩餘污泥有市場價值
- 3. 每處理1 kg COD可省1度曝氣電力
- 4. 每公斤COD去除產生之0.25 kg甲烷,可產生燃 燒熱能3000 kcal。
- 5. 廢水處理場空間需求降低可達50%
- 6. COD負荷約為 5-10 kg/m³.day
- 7. 氦磷添加減量90%
- 8. 可停止操作4個月後在一週內重新啟動達原處 理水準

- 2.厭氧/喜氣取代傳統有機廢水處理技術-適用事業
- 1. 半導體封裝/光電
- 2. 食品(澱粉/釀酒/乳品/罐頭)
- 3. 製紙
- 4. 乙二醇、對苯二甲酸、聚酯等製造
- 5. 生活污水


2.厭氧/喜氣取代傳統有機廢水處理技術-生活廢水處理案例

中山大學1200CMD污水處理廠簡介


設計水質

	進流水	放流水
生化需氧量(BOD)	200 mg/L	<30 mg/L
化學需氧量(COD)	500 mg/L	<100 mg/L
酸鹼度(pH)	6-9	6-8
懸浮固體物(SS)	250 mg/L	<30 mg/L
大腸菌(E. Coli.)		<2000 個/mL

處理流程

前處理

進流池及攔污柵

螺旋篩

前處理系 後處理 統出流水 750 CMD 空氣 1200 CMD 調整池(225 立方公尺) 舊有接觸氧化池 舊有消毒槽 舊有終沉池 (120立方公尺) (直徑4.5公尺;B容積55立方公尺)(16立方公尺) ▼污泥* -空氣 植栽用水 500 CMD 放流 海洋 1250 **CMD** 污泥* 終沉池 上流式厭氣污 消毒槽 放流水抽水井 接觸氧化池

泥床反應池(UASB) (300立方公尺)

(表面積77平方公尺、?容積(23立方公尺) 146立方公尺)

放流水 pH:6-8 COD < 100 mg/LBOD < 30 mg/LS S < 30 mg/L大腸菌<2000個/mL

生物處理原理

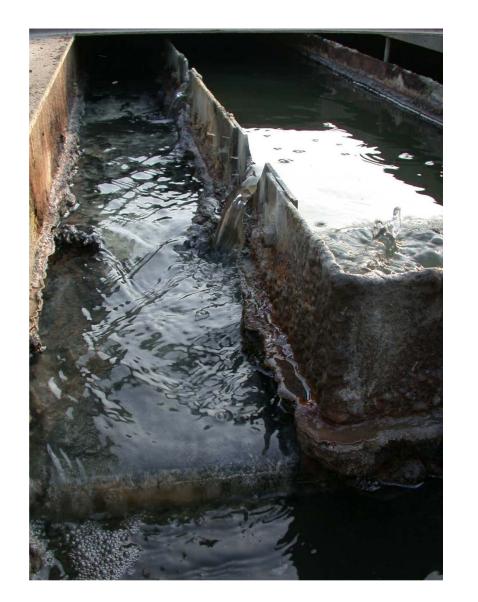
厭氣反應

$$COD=20$$

$$COD=5$$

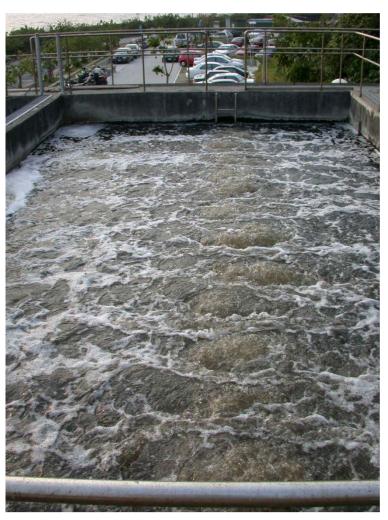
喜氣反應

剩餘有機物
$$+O_2 = CO_2 + H_2O$$
 + 殘存有機物 + 污泥


$$COD=20$$

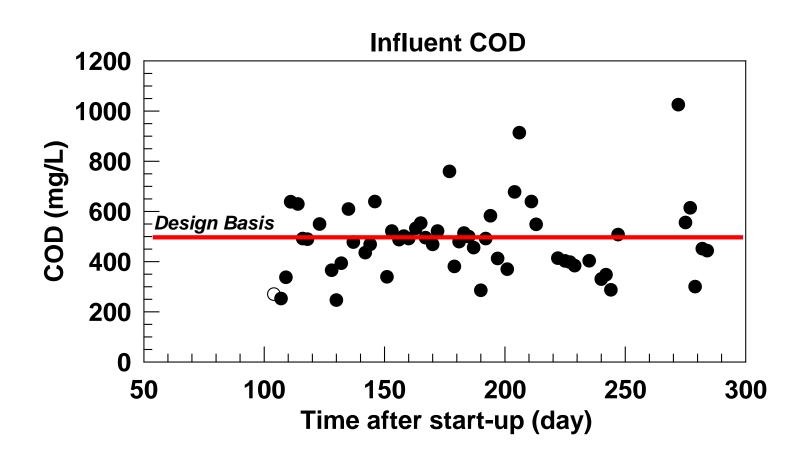
$$COD=10$$
 $COD=4$

厭氣池壁及頂蓋

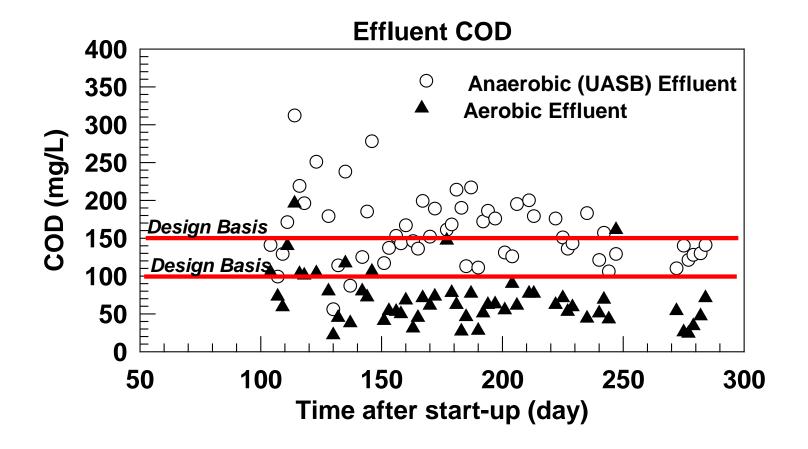


厭氣池頂溢流水

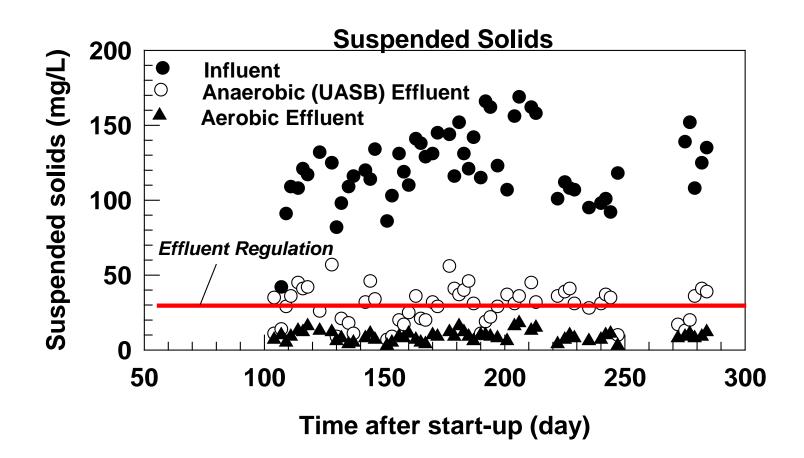
厭氣池污泥及處理後溢流水



接觸曝氣池及終沉池



加氯消毒池

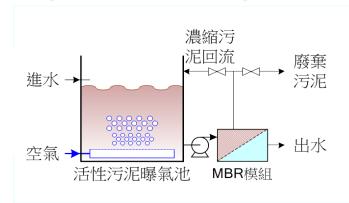

處理結果

UASB出流水COD/ 放流水COD

懸浮固體物(SS)

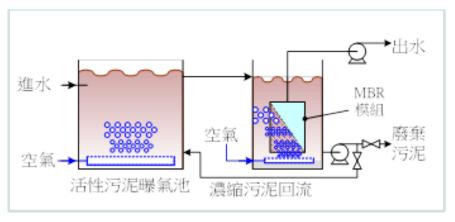
進流/厭氣池出流/曝氣池出流/放流水。

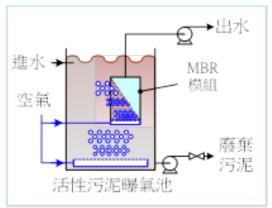
檢討


- 1. 平均每日處理量 800 m³
- 2. 厭氧水力停留時間 9 小時
- 3. 接觸曝氣水力停留時間 9 小時
- 4. 總動力10HP。
- 5. 每日耗電量180度,
- 6. 每噸廢水剩餘污泥量0.01kg
- 7. 每月80%水份污泥量 1,000 kg
- 每噸廢水電費0.6元,污泥運棄費0.13元,人力費0.5元,合計1.23元

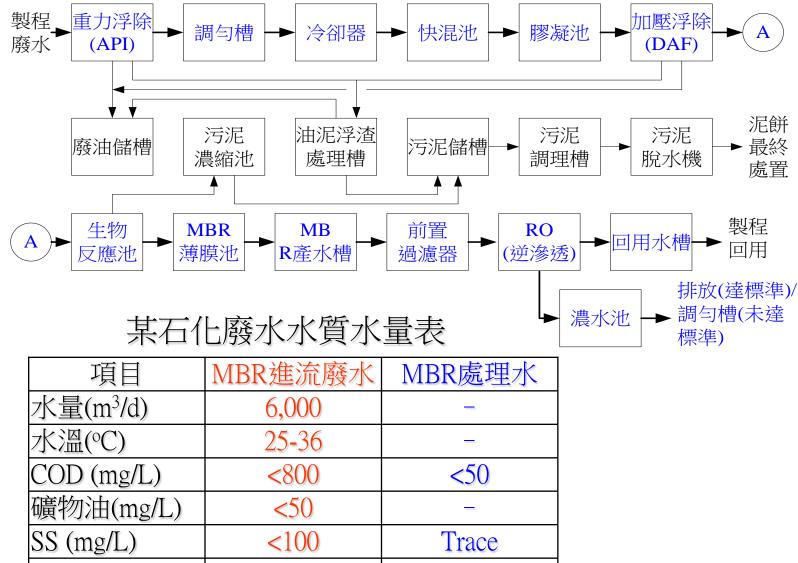

3. MBR應用案例

MBR依薄膜放置方式可區分為


• 外部循環式(re-circulated)或支流式(side stream)


MBR 支流式(左)及 氣舉循環式(右) MBR系統

• 浸入式(submerged)或整合式(integrated) MBR



浸入式(左)及整合式(右) MBR系統

MBR處理案例(1)某石化廢水處理

6~9

(-) Hal

6~9

MBR處理案例(2)

某工廠煉油廠低鹽廢水回收

項目	進流廢水水質 (汽提酸水+ 脫鹽廢水)	生物薄膜(MBR) 處理後水質 (設計)	冷卻水塔 補充水標準	
設計回收水量 (m³/d)	5,000	4,700	_	
氯鹽(mg/L)	60	_	< 500	
SiO ₂ (mg/L)	2.0	_	<50	
電導度(μS/cm)	326	_	<3,400	
COD (mg/L)	569	<90	≦ 90	
SS (mg/L)	23	<5	≦ ???	
氨氮(mg/L)	12.0	_	≦1.0	

4.金屬電鍍製程減廢及管末處理改善案例

高雄某電鍍廠

製程:酸鍍鋅、染色/水量:310 CMD/日工作24小時

減廢規劃後進流水質:

	pН		濃度(mg/L)										
		SS	SS COD 油 Fe Cu Ni Zn 總 Cr ⁶⁺ CN ⁻										
				脂					Cr				
1.	5.6	395	354	0.6	66.7	0.11	0.04	85.4	0.89	ND	ND		
2.	5.6	1480	1590	1.7	55.1	0.36	0.04	433	0.29	0.03	ND		
3.	5.2	162	333	50.4	62.9	0.06	ND	206	193	170	< 0.05		

1. 酸鹼廢水; 2. 鋅系廢水; 3. 鉻系廢水

之進流水水質,此為經過線上減廢規劃後之進流水質,以下將討論減廢及分流做法。

(1) 高濃度廢液分流收集處理

針對電鍍製程產生之高濃度廢液另行收集,委託合格清運及處理廠商處理。

高濃度廢液收集系統(酸鍍鋅及酸鹼廢液)

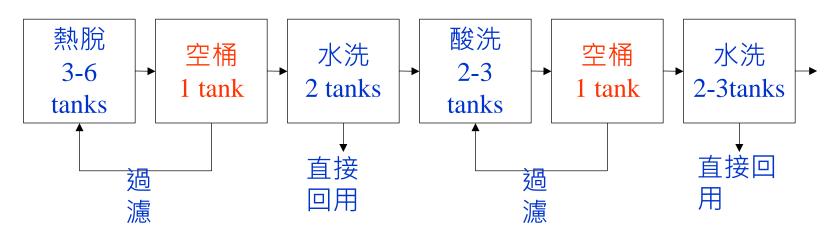
高濃度廢液收集系統(鉻系)

(2) 低濃度廢水分流收集處理

針對低濃度清洗水,依其特性分流收集,排放至廢 水處理廠後續處理。

鋅系廢水收集管路

鉻系廢水收集管路


鋅系廢水集水井

鉻系廢水集水井

(3) 線上藥劑/清洗水回流再利用

根據製程藥劑使用程度,規劃藥劑及清洗水回用;藥劑需 過濾後再使用,以免造成製程雜質過多;而清洗水則由後 端無害製程向前端依序回用;有害製程之清洗水則不回用, 直接收集後排至廢水場處理。藉由此做法,用水量可節省 30-50%。

(4) 廢污水收集及處理

- 業別: 螺絲製造業
- 製程作業時間: 24小時
- 污染源: 螺絲熱處理及電鍍表面處理水洗廢水
- 高濃度廢液/廢油回收再利用或委外清理
- 水量:

	排放量(m³/日)
WM01 熱處理廢水	100
WM02 脫脂廢水	90
WM03 鋅系廢水	100
WM04 鉻系廢水	100
WM05 生活污水	20
合計	410

- •新建廢污水設備規劃興建:03/2013 -03/2014
- 新建廢汙水總槽體:

地上槽體: 510 m³ 地下槽體: 480 m³ (120x4)

- •新設備運轉作業時間:20小時
- 設計水量: 410 m³/(20 hrs/day)
- 規劃水量與水質:

廢水類別	排放量(CMD)
鋅系廢水	100
鉻系廢水	100
脫脂廢水	90
熱處理廢水	100
生活污水	20

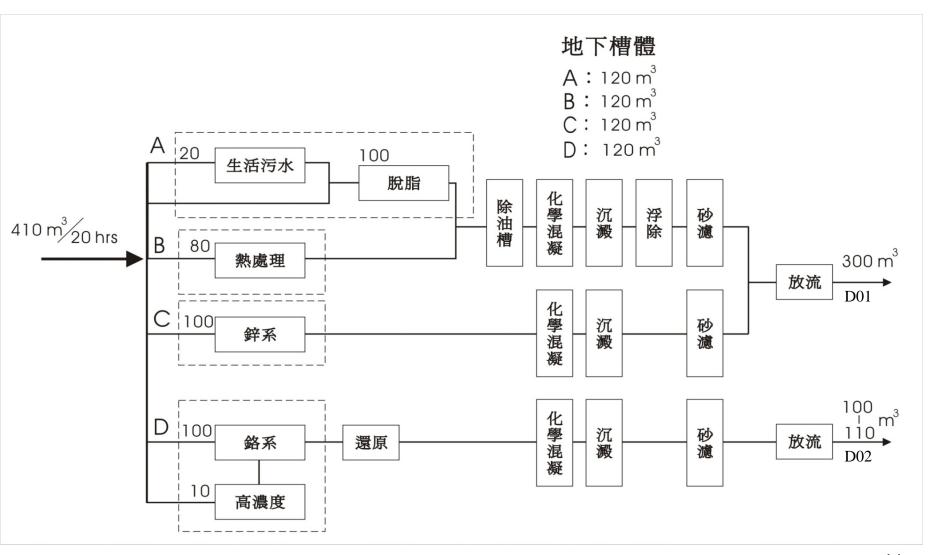
水質項目	預估數值
pH	5.2-5.6
SS	162-1480
COD	333-1590
Zn	85-206
Cr	ND-193
油脂	0.6-50

· WM01 熱處理廢水

水質項目	預估值(mg/L)
SS	300-800
COD	500-3000
油脂	500-1500
Zn/Fe	50-500
Ni/Cu	ND-2

• WM02 脫脂廢水

水質項目	預估值(mg/L)
SS	200-500
COD	300-1500
油脂	50-500
Zn	50-500
Fe	50-800
Ni/Cu	ND-2


• WM03 鋅系廢水

水質項目	預估值(mg/L)
SS	150-600
COD	500-3000
油脂	10-30
Zn	300-1000
Fe	30-100

• WM04 鉻系廢水

水質項目	預估值(mg/L)
SS	150-250
COD	200-800
油脂	10-30
Zn	150-400
Fe	50-200
六價鉻	3-10
總路	10-35

• 廢水處理流程

• 處理後放流水質

由表知,經製程線上減廢及廢污水分流收集處理後 之水質可達放流水標準。

		рН		濃度(mg/L)								
			SS	COD	(2) ()	Fe	Cu	Ni	Zn	總 Cr	Cr ⁶⁺	CN⁻
					油脂							
1	1.	7.6	10.4	57	1.9	0.05	ND	ND	0.10	ND	0.02	ND
1	2,	7.3	5.8	25	0.6	0.008	ND	ND	0.22	ND	<0.01	ND

- 生活污水/熱處理/鋅系
- (1.) 生活污水/熱/ (2.) 高濃度/鉻系